skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yi, Su-in"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Solid solutions of Mg 2 Si and Mg 2 Sn are promising thermoelectric materials owing to their high thermoelectric figures-of-merit and non-toxicity, but they may undergo phase separation under thermal cycling due to the presence of miscibility gaps, implying that the thermoelectric properties could be significantly degraded during thermoelectric device operation. Herein, this study investigates the strain-induced suppression of the miscibility gap in solid solutions of Mg 2 Si and Mg 2 Sn. Separately prepared Mg 2 Si and Mg 2 Sn powders were made into (Mg 2 Si) 0.7 (Mg 2 Sn) 0.3 mixtures using a high energy ball-milling method followed by spark plasma sintering. Afterwards, the phase evolution of the mixtures, depending on thermal annealing and mixing conditions, was studied experimentally and theoretically. Transmission electron microscopy and X-ray diffraction results show that, despite the presence of a miscibility gap in the pseudo-binary phase diagram, the initial mixture of Mg 2 Si and Mg 2 Sn evolved towards a solid solution state after annealing for 3 hours at 720 °C. Thermodynamic analysis as well as phase-field microstructure simulations show that the strain energy due to the coherent spinodal effect suppresses the chemical spinodal entirely and prevents phase separation. This strategy to suppress the miscibility gap induced by lattice strain through non-equilibrium processing can benefit the thermoelectric figure-of-merit by maximizing phonon alloy scattering. Furthermore, stable solid solutions by engineering phase diagrams have the potential to facilitate the reliable long term operation of thermoelectric generators under continuous thermal loads. 
    more » « less